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Abstract. A central problem of branch-and-bound methods for global optimization is that often a
lower bound do not match with the optimal value of the corresponding subproblem even if the dia-
meter of the partition set shrinks to zero. This can lead to a large number of subdivisions preventing
the method from terminating in reasonable time. For the all-quadratic optimization problem with
convex constraints we present optimality cuts which cut off a given local minimizer from the feasible
set. We propose a branch-and-bound algorithm using optimality cuts which is finite if all global
minimizers fulfill a certain second order optimality condition. The optimality cuts are based on the
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also used for constructing tight lower bounds. Moreover we present for the box-constrained and the
standard quadratic programming problem dual bounds which have under certain conditions a zero
duality gap.
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1. Introduction

In this paper we consider the following all-quadratic optimization problem:

global minimize q0(x)

subject to qi(x) ≤ 0, i ∈ Iin(Q)
qi(x) = 0, i ∈ Ieq

whereqi(x) := 1
2x

T Aix+bTi x+ci ,Ai ∈ R(n,n), bi ∈ Rn, ci ∈ R, i ∈ Iin∪Ieq∪{0}.
It is assumed that the inequality constraints of problem (Q) are convex and the
equality constraints are linear.

Problem (Q) plays an interesting role in global optimization. Important special
cases of (Q) are for example the trust region problem with one or several ellipsoid
constraints, the box-constrained quadratic program and the standard quadratic pro-
gram. It is known that problem (Q) is NP-hard [12]. For applications and solution
methods we refer to [8, 2, 6, 13, 26, 27, 19, 20, 22, 3, 4, 21]. Many solution
methods for problem (Q) are based on the branch-and-bound (B&B) principle.
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A well-known difficulty of B&B algorithms is that often regions containing a
global minimizer have to be subdivided very often in order to get sharp lower
bounds. In large dimensions this can prevent the method from terminating in reas-
onable time. Almost all existing bounding methods for problem (Q) produce lower
bounds which usually do not match with the optimal value of the corresponding
subproblem. This can lead to infinitely many iterations of a B&B algorithm. Finite
termination of B&B algorithms can be proved often only for so-calledε-optimal
solutions.

We propose to useoptimality cuts for avoiding this difficulty. An optimality cut
is a cutting plane which cuts off a part of the feasible set containing a local minim-
izer. In Section 2 we propose a B&B algorithm using optimality cuts which solves
problem (Q) in finite time under certain assumptions. The basis for the construction
of optimality cuts is Lagrangian relaxation of problem (Q) which we introduce in
Section 3. Based on these results we construct in Section 4 tight lower bounds and
derive in Section 5 optimality cuts. Moreover we present in Section 6 for the box-
constrained and the standard quadratic programming problem dual bounds which
have under certain conditions a zero duality gap. We finish in Section 7 with a short
discussion on the implementation of the algorithm and with some conclusions.

2. A Finite Branch-and-Bound Algorithm

In this section we describe a B&B algorithm for solving problem (Q) in finitely
many iterations. We begin with the description of basic operations of a B&B al-
gorithm.

2.1. BASIC B&B OPERATIONS

Partition Sets.Denote by� ⊂ Rn the feasible set of problem (Q). LetS1, .., Sr be
subsets ofRn such that

r⋃
i=1

Si ⊃ � and intSi ∩ int Sj = ∅ for i 6= j.

Each subsetSi is called partition set and the collection of partition sets denoted by
P := {S1, .., Sr} is called a partition of�.

Subdivision Methods.A subdivision method defines from a given partition a
new partition by subdividing one or several partition sets. A nested subsequence of
partition sets{Si}, (i.e.Si+1 ⊂ Si ∀i), is called exhaustive ifSi shrinks to a unique

point, i.e.
∞⋂
i=1

Si = {x}. A partition method is called exhaustive if every nested

subsequence of partition sets generated by the subdivision method is exhaustive.
Examples for exhaustive partition methods are given in [12].
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Lower Bounds.Let S be a closed subset ofRn The optimal value ofq0(x) over
� ∩ S is denoted by

q∗(S) :=
{

min
x∈�∩S

q0(x) : if � ∩ S 6= ∅
∞ : else

. (1)

A lower bound ofq∗(S) is denoted byµ(S). A lower bounding method is called
tight if

lim
i→∞µ(Si) =

{
q0(x̂) : if x̂ ∈ �
∞ : else

where{Si} is an exhaustive nested subsequence with
∞⋂
i=1

Si = {x̂}.

Heuristics. A heuristicF(S) ∈ Rn for problem (Q) is defined by the following
two steps:

(i) In the first step a point̃x ∈ S is computed which should be close to a global
minimizer ofq0 overS ∩ � if S ∩ � 6= ∅. This can be done by simply choosing
an arbitrary point inS or by applying a more involved procedure as for example a
Lagrange Heuristic (see Remark 1).

(ii) In the second step the initial point̃x is refined by applying a local search
methodLS(x̃) starting from the point̃x for minimizing an exact penalty function
as for example min

x∈Rn
P (x) := q0(x) +

∑
i∈Iin

ρi max{0, qi(x)} +
∑
i∈Ieq

ρi|qi(x)| where

ρi, i ∈ Iin ∪ Ieq , are sufficiently large penalty parameters.
Note that the point computed byLS(x̃) must not be in� ∩ S and is not ne-

cessarily a strict local minimizer. We denote by2(x∗) the region of attraction of
a local minimizer ofP(x) with respect to the local search method, i.e.2(x∗) :=
{x ∈ Rn : LS(x) = x∗}.We require the following property:

ASSUMPTION 1. For all global minimizersx∗ of problem (Q) there exist a closed
ball Bδ(x∗) with centerx∗ and diameterδ > 0 such thatBδ(x∗) ⊂ 2(x∗).
Assumption 1 can be satisfied for example if the global minimizers of (Q) fulfill a
certain constraint qualification (see [25]; Satz 3.6.5).

Upper Bounds.An upper bound ofq∗(S) is defined by

γ (S) :=
{
q0(F (S)) : if F(S) ∈ �
∞ : else

Optimality Cuts. Given a local minimizerx∗ ∈ � of problem (Q) we call a
halfspaceH := {x ∈ Rn : ηT x ≤ γ } whereη ∈ Rn andγ ∈ R an optimality cut if
x∗ ∈ int H andq∗(H) = q0(x

∗).
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2.2. BRANCH-AND-BOUND USING OPTIMALITY CUTS

The following B&B algorithm solves problem (Q) in finite time using optimality
cuts and tight lower bounds. We denote byqopt the actual estimate of the optimal
value and byµ(S) a tight lower bounding method.

ALGORITHM 1.

1 determineS ⊂ Rn such thatS ⊃ �, computeµ(S), setP = {S}
andqopt = +∞;

2 repeat
3 chooseŜ ∈ P such thatµ(Ŝ) = min

S∈P µ(S);

4 computeF(Ŝ);
5 if γ (Ŝ) ≤ qopt andγ (Ŝ) 6= ∞
6 setqopt = γ (Ŝ);
7 try to compute an optimality cutH with respect toF(Ŝ);
8 if this is possible : compute for allS ∈ P : µ(Ŝ \ int H),
9 setP = {S \ int H : S ∈ P } andgoto 12
10 endif
11 subdivideŜ into S1, .., Sp, computeµ(S1), .., µ(Sp)

and setP = P ∪ {S1, .., Sp} \ {Ŝ};
12 delete elementsS ∈ P withµ(S) ≥ qopt .
13 until P = ∅.

PROPOSITION 1.Assume that� 6= ∅, the lower bounding methodµ(S) is tight
and the subdivision method of Algorithm 1 is exhaustive. Assume further that As-
sumption 1 is fulfilled and it is possible to make an optimality cut with respect tox̂

if x̂ is a global minimizer of problem (Q). Then Algorithm 1 terminates after finitely
many iterations.

Proof. Assume that Algorithm 1 does not terminate in finite time. Then there
exists a nested subsequence of partition elements{Si} generated by Algorithm
1 such thatµ(Si) is the global lower bound of the corresponding partition, i.e.
µ(Si) = min

S∈Pi
µ(S), implyingµ(Si) ≤ q∗. Since the partition method is exhaustive

we have
∞⋂
i=1

Si = {x̂}. We show now that the sequence{Si} is finite which proves the

assertion. Ifx̂ is a global minimizer of (Q) there existk ∈ IN such thatSk ⊂ 2(x̂)
due to Assumption 1 implyingF(Sk) = x̂. In this case the algorithm makes an
optimality cut with respect tôx proving the finiteness of{Si}. If x̂ is not a global
minimizer then either̂x 6∈ �, implying µ(Si) → ∞, or x̂ ∈ � andq0(x̂) > q∗,
implying µ(Si)→ q0(x̂) sinceµ(Si) is tight. In both cases it followsµ(Si) > q∗
if i is sufficiently large. This contradictsµ(Si) ≤ q∗.
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3. Lagrangian Relaxation

We describe now the method for obtaining lower bounds for problem (Q) based on
Lagrangian relaxation.

3.1. NOTATION

Let I ⊂ IN be an index set. We define byRI the |I |-dimensional Euclidean space
with the vector indexing defined byI , i.e. RI = {{xi}i∈I : xi ∈ R, i ∈ I }. We
use the notationA � 0 for a matrixA to be positive semidefinite. The linear space
spanned by vectorsv1, .., vp is denoted by span{v1, .., vp}, a linear space which
is orthogonal to a given linear spaceV is denoted byV ⊥ and the null-space of a
linear map defined by a matrixA is denoted by kernA. Furthermore|x| denotes
the Euclidean norm of a vector,‖A‖2 denotes the two-norm of a matrix andλ1(A)

denotes the smallest eigenvalue of a matrix.

3.2. BASIC PRINCIPLE

The Lagrange function of problem (Q) is the quadratic form

L(x, α) := q0(x)+
∑
i∈I

αiqi(x),

whereI := Iin ∪ Ieq . Consider the Lagrange problem

9(α) := min
x∈Rn

L(x, α). (2)

The dual bound is defined by

9∗ := max
α∈RI

9(α)subject toαi ≥ 0, i ∈ Iin. (3)

By weak duality we have

q∗ −9∗ ≥ 0.

The quantityq∗−9∗ is called duality gap. It is well-known that due to the noncon-
vexity of problem (Q) it is possible that a nonzero duality gap can occur. However,
if (Q) is convex and satisfies a Slater condition thenq∗ − 9∗ = 0. Note that most
of the existing lower bounding methods do not have this useful property.

3.3. EQUIVALENT FORMULATIONS OF THE DUAL BOUND

Interestingly (3) can be formulated as a semidefinite program (SDP).
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LEMMA 1. Let x̂ ∈ Rn be an arbitrary point,Q(α, y) ∈ R(n+1,n+1) the matrix
defined by

Q(α, y) :=
( 1

2∇2
xL(x̂, α)

1
2∇xL(x̂, α)

1
2∇xL(x̂, α)T L(x̂, α)− y

)
andS ⊂ RI × R the set defined by

S := {(α, y) ∈ RI × R : Q(α, y) � 0, αi ≥ 0, i ∈ Iin}. (4)

Then

9∗ = max
(α,y)∈S

y. (5)

Proof.Let (α̂, ŷ) be a solution of (5). SinceQ(α̂, ŷ) � 0 we have(
x − x̂

1

)T
Q(α̂, ŷ)

(
x − x̂

1

)
= 1

2
(x − x̂)T∇2

xL(x̂, α̂)(x − x̂)+∇xL(x̂, α̂)T (x − x̂)+ L(x̂, α̂)− ŷ
= L(x, α̂)− ŷ ≥ 0 ∀x ∈ Rn.

This impliesŷ ≤ min
x∈Rn

L(x, α̂) ≤ 9∗. Now let (α∗, x∗) be a solution of (3), i.e.

9∗ = L(x∗, α∗). If 9∗ = −∞ we have obviously9∗ ≤ ŷ. If 9∗ > −∞ it follows

∇2
xL(x

∗, α∗)�0 and∇L(x∗, α∗)=0 implyingQ(α∗,9∗)=
(

1
2∇2

xL(x
∗, α∗) 0

0 0

)
�

0. Therefore,(α∗,9∗) ∈ S and hence9∗ ≤ ŷ. 2
The next Lemma gives a further equivalent formulation of9∗.

LEMMA 2. Let Ilin ⊂ I and Iq ⊂ I be the index sets of linear constraints
and quadratic constraints of problem (Q) respectively. Define the Lagrangian with
respect to quadratic constraints

Lq(x, α) := q0(x)+
∑
i∈Iq

αiqi(x),

the feasible set with respect to linear constraints

P := {x ∈ Rn : qi(x) ≤ 0, i ∈ Iin ∩ Ilin, qj (x) = 0, j ∈ Ieq ∩ Ilin}.
and the positive semidefinite cone

C := {α ∈ RIq : αi ≥ 0, i ∈ Iin ∩ Iq,∇2
xLq(x, α) � 0}.

If C 6= ∅ then

9∗ = max{min
x∈P

Lq(x, α) : α ∈ C}. (6)
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Proof.Letα∗ = (α∗q , α∗l ) be a solution of (3) whereα∗q corresponds to quadratic
constraints andα∗l corresponds to linear constraints of (Q). FromC 6= ∅ it follows
α∗q ∈ C. It holds

9∗ = {max9(α) : αi > 0, i ∈ Iin}
= {max9(α∗q , αl) : αi > 0, i ∈ Iin ∩ Ilin}
= {max min

x∈Rn
L(x, α∗q , αl) : αi ≥ 0, i ∈ Iin ∩ Ilin}

= min
x∈P

Lq(x, α
∗
q ) ≤ 9∗q

where9∗q is the optimal value of the right-hand side of (6). The last equation
follows from strong duality sinceLq(x, α∗q ) is convex (see [12]). On the other hand
we have

9∗q = max{min
x∈P Lq(x, αq) : αq ∈ C}

= max{min
x∈Rn

L(x, α) : αi > 0, i ∈ Iin,∇2
xL(x, α) � 0} ≤ 9∗.

The last equation follows from strong duality sinceLq(x, αq) is convex. This
proves9∗ = 9∗q . 2

Note that by including quadratic box constraints(xi − xi)(x̄i − xi) 6 0, 1 6
i 6 n into (Q) it can be shown thatC 6= ∅ (see Lemma 4).

3.4. COMPUTING9∗

In the last years many methods for computing9∗ have been proposed. These
methods can be divided into three classes. The first class are methods for solving a
semidefinite program similar as (5), see for example, [9] for solution methods and
applications of semidefinite programming. Most of these algorithms are interior
point methods which usually converge fast if the size of the problem is moderate.
However, for large scale problems the convergence can be slow if it is not possible
to exploit problem structure. The second class are methods based on eigenvalue
optimization. In [11] the Lagrangian relaxation bound for the max-cut problem is
computed by formulating (3) as an eigenvalue optimization problem and solving
this problem by the so-called spectral bundle method. In [11, 10], numerical results
for large scale structured problems are presented indicating that this bundle method
is faster than an interior point method. A third approach for computing9∗ is
proposed by [24]. This approach is based on maximizing an exact penalty func-
tion overRI . Numerical results on this approach using the so-called r-algorithm
for maximizing a nonsmooth penalty function are reported in [24]. An advantage
of using nonsmooth optimization methods is that they often can exploit problem
structure making them attractive for large scale structured optimization problems.
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4. Improving Dual Bounds

Several methods for improving dual bounds are known (see [15]). One of the most
promising method is to add redundant constraints to the original problem. We will
apply this approach to the following subproblem of (Q).

4.1. THE SUBPROBLEM

Let S ⊂ Rn be a partition set such that� ∩ S 6= ∅. We assume in the sequel that
S is a polytope defined by some linear inequalities, i.e.S = {x ∈ Rn : qi(x) ≤
0, i ∈ Is} whereqi for i ∈ Is are linear functions. The quadratic program with
respect to a partition setS reads

global minimize q0(x)

subject to qi(x) ≤ 0, i ∈ Iin ∪ Is(Q(S))
qi(x) = 0, i ∈ Ieq.

We denote by9∗(S) the dual bound of (Q(S)).

4.2. ADDING REDUNDANT CONSTRAINTS

Shor proposed in [23, 24] a method for improving the Lagrangian relaxation bound
by introducing redundant constraints. Letqi(x) be quadratic forms such thatqi(x) ≤
0 for i ∈ Îin \ (Iin ∪ Is) and qi(x) = 0 for i ∈ Îeq \ Ieq for all x ∈ � ∩ S
whereÎin ⊃ Iin ∪ Is andÎeq ⊃ Ieq . Consider the following extended all-quadratic
program:

global minimize q0(x)

subject to qi(x) ≤ 0, i ∈ Îin(QE(S))
qi(x) = 0, i ∈ Îeq

We denote byq∗e (S), Le(x, α) and9∗e (S) the optimal value, the extended Lag-
rangian and the dual bound of (QE(S)) respectively.

LEMMA 3. It holds

9∗(S) ≤ 9∗e (S) ≤ q∗(S) = q∗e (S).

Proof.Since�∩S is not changed by the redundant constraints we haveq∗e (S) =
q∗(S). Denote by9e the Lagrange function of problem (QE(S)). Since dom9 ⊂
dom9e it follows 9∗(S) ≤ 9∗e (S). 2
REMARK 1. A solution of the dual problem of (QE(S)) can be used to define a
so-called Lagrange heuristic for approximately computing a global minimizer of
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(QP(S)). Letα∗ ∈ argmax{9e(α) : αi ≥ 0, i ∈ Îin}. Thenx̂ ∈ argmin
x∈S

Le(x, α
∗)

is an approximation of global minimizer ofq0 over � ∩ S. The quality of this
heuristic depends strongly on the added redundant constraints (see for example,
[7] and [17]).

4.3. TIGHT LOWER BOUNDS

The B&B-algorithm presented in Section 2 requires tight lower bounds. Including
quadratic box-constraints into (QE(S)) it can be shown that9∗e (S) is a tight lower
bound.

LEMMA 4. Let S ⊂ Rn be a compact partition set. Assume that the quadratic
inequality constraints

(xk − x̄k(S))(xk − xk(S)) ≤ 0, 1≤ k ≤ n (7)

are included in the lower bounding program (QE(S)) wherexi(S) := min
x∈S

xi and

x̄i(S) := max
x∈S

xi for 1≤ i ≤ n. ThenC 6= ∅ whereC is defined as in Lemma 2 and

µ(S) := 9∗e (S) is a tight lower bounding method.
Proof. Choose a proper indexing of the constraints of (QE(S)) such thatα =

(α(1), α(2)) whereα(1) ∈ Rn pertains to the constraints (7) andα(2) pertains to the
remaining constraints. Defineγ0 := max{0,−λ1(∇2q0)} and denote bye ∈ Rn
the vector of ones. Then∇2

xLe(x, (γ0e,0)) � 0 provingC 6= ∅. Let {Sk} be an

exhaustive nested sequence with
∞⋂
k=1

= {x̂}. We consider firstly the casêx ∈ �. Let

x̃k := arg min
x∈Sk

Le(x, (γ0e,0)). From Lemma 2 it follows

0≤ q0(x̂)−9∗e (Sk) ≤ q0(x̂)− Le(x̃k, (γ0e,0))

≤ |q0(x̂)− q0(x̃
k)| + γ0

n∑
i=1

|xi(Sk)− x̄i (Sk)|2.

Hence lim
k→∞9

∗
e (Sk) = q0(x̂) sincex̃k converges towardŝx. Now assumêx 6∈ �.

This implies that there exist an indexl ∈ I such that eitherql(x̂) > 0 andl ∈
Iin or ql(x̂) 6= 0 and l ∈ Ieq . Chooseαl = γ1 and α(1) = γ2e whereγ1 =
sign(ql(x̂)) diam(Sk)−1 andγ2 = γ0 + max{0,−λ1(∇2ql)} diam(Sk)−1 and set
the remainingαi ’s equal to zero. Let̃xk := arg min

x∈Sk
Le(x, α). Since∇2Le(x, α) �

0 from Lemma 2 it follows

9∗e (Sk) ≥ Le(x̃k, α) = q0(x̃
k)+ γ1ql(x̃

k)+O( diam(Sk)).
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Hence lim
k→∞9

∗
e (Sk) = ∞ sincex̃k converges towardŝx. This proves thatµ(S) =

9∗e (S) is a tight lower bounding method. 2
The result of Lemma 4 applies also to the general problem (Q) with (pos-

sibly) nonconvex constraints. Note that the lower bound used in the global op-
timization methodα-BB [1] is obtained by choosing a specific valueα such that
∇2
xLe(x, α) � 0. >From this it follows that in general9∗e (S) is more accurate than

theα-BB bound.

4.4. CLOSING THE DUALITY GAP

We discuss now if the duality gap of problem (QE(S)) can be closed by adding
redundant constraints. The duality gap of problem (QE(S)) is studied in [5] for
special cases. If problem (QE(S)) is convex satisfying a Slater condition there is
no duality gap. Also for the trust region problem with one ellipsoid constraint it is
known that the duality gap is zero. However, in the presence of two ellipsoid con-
straints a nonzero duality gap can occur. Shor proved in [23] that problem (QE(S))
has a nonzero duality gap if and only if the objective function of an equivalent
unconstrained polynomial programming problem can be represented as a sum of
squares of other polynomials. However, in practice it is not known in general how
to compute the polynomials. The following simple result gives a theoretical answer
to the question if it is possible to close the duality gap of problem (QE(S)) by
adding a single quadratic constraint.

LEMMA 5. Assume that the inequality constraintq∗(S)− q0(x) ≤ 0 is included
in problem (QE(S)). Then9∗e (S) = q∗(S).

Proof. Choosing the Lagrange parameter corresponding to the inequality con-
straintq∗(S)−q0(x) 6 0 equal to one and setting the remaining Lagrange paramet-
ers zero givesLe(x, α) = q∗(S) implying 9∗e (S) ≥ q∗(S). Since9∗e (S) 6 q∗(S)
the statement is proved. 2

Of course, Lemma 5 is not very useful in practice since the optimal valueq∗ is
not known in advance. The following simple global optimality criterion provides a
more constructive condition.

LEMMA 6. Let Î := Îin ∪ Îeq . It holds9∗e (S) = q∗(S) if and only if there exist

α̂ ∈ RÎ and x̂ ∈ � ∩ S such that

α̂i ≥ 0 for all i ∈ Îin, Le(x̂, α̂) = q0(x̂), ∇xLe(x̂, α̂) = 0

and∇2
xLe(x̂, α̂) � 0. (8)

Proof. Let α∗ be a solution of (3) and letx∗ be a global minimizer of problem
(Q(S)). If9∗e (S) = q∗(S) it follows x∗ ∈ argmin

x∈Rn
Le(x, α

∗). Hence(α∗, x∗) fulfills

condition (8).
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Now let (α̂, x̂) be a point satisfying (8). Then9∗e (S) ≤ q∗(S) ≤ q0(x̂) =
min
x∈Rn

Le(x̂, α) ≤ 9∗e (S). Hence9∗e (S) = q∗(S). 2

5. Optimality Cuts

Using the previous results we describe now a method for constructing optimality
cuts for problem (Q) based on Lagrangian relaxation.

5.1. ASSUMPTIONS

For constructing an optimality cut with respect to a local minimizerx∗ of problem
(Q) we have to assume thatx∗ fulfills the following assumption.

ASSUMPTION 2. Let x∗ be a local minimizer of problem (Q). There exist cor-
responding Lagrange multipliersλ∗ ∈ RI and the Hessian∇2q0(x) is positive
semidefinite overT +x∗ , i.e.

yT∇2q0(x)y ≥ 0 for all y ∈ T +x∗,
where the extended tangent spaceT +x∗ is defined by

T +x∗ := {x ∈ Rn : ∇qi(x∗)T x = 0 for i ∈ B(x∗) ∪ Ieq}
and

B(x∗) := {i ∈ Iin : λ∗i > 0}
is the index set corresponding to positive Lagrange multipliers.

We give now several conditions implying Assumption 2.

LEMMA 7. Let x∗ be a local minimizer of problem (Q) andλ∗ ∈ RI be the
corresponding Lagrange multiplier fulfilling the strict complementarity condition:

λ∗i > 0 for i ∈ A(x∗)

where

A(x∗) := {i ∈ Iin : qi(x∗) = 0}
is the index set of active constraints. The following conditions imply Assumption 2:
(i) the pointx∗ fulfills the modified second order optimality condition: the Hessian
∇2q0(x) is positive semidefinite over the tangent spaceTx∗ defined by

Tx∗ := {x ∈ Rn : ∇qi(x∗)T x = 0 for i ∈ A(x∗) ∪ Ieq};
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(ii) the constraints of problem (Q) are linear andx∗ fulfills the second order optim-
ality condition: the Hessian∇2

xL(x
∗, λ∗) is positive semidefinite over the tangent

spaceTx∗ ;
(iii) the constraints of problem (Q) are linear andx∗ is a regular point, i.e. the
vectors{∇qi(x∗) : i ∈ A(x∗) ∪ Ieq} are linearly independent.

Proof.(i) From the strict complementarity condition it followsA(x∗) = B(x∗).
This impliesT +x∗ = Tx∗ which proves the assertion.

(ii) Since the constraints of problem (Q) are linear it holds∇2
xL(x, λ) = ∇2q0(x).

Therefore (ii) is equivalent to (i) in this case.
(iii) Since a local minimizer which is a regular point fulfills the second order

optimality condition, (iii) implies (ii). 2
EXAMPLE 1. Consider the following example:min{−xT x : 0 ≤ x ≤ e}, where
x ∈ Rn and e ∈ Rn is the vector of ones. This problem has a unique global
minimizerx∗ = e fulfilling the strict complementarity condition. From Lemma 7
(iii) it follows that x∗ fulfills Assumption 2.

5.2. THE MAIN THEOREM

In this section we present the main Theorem for deriving optimality cuts. We begin
with the following result.

LEMMA 8. LetA ∈ R(n,n) be a symmetric matrix which is positive semidefinite
over the linear subspace span{w1, .., wp}⊥ wherewi ∈ Rn,1 ≤ i ≤ p. Then
there exist̄τ ∈ Rp such that

A+
p∑
i=1

τiwiw
T
i is positive semidefinite for allτ ≥ τ̄ .

Proof.LetB :=
p∑
i=1

ρiwiw
T
i whereρi > 0,1 ≤ i ≤ p. LetV := span{w1, .., wp},

R := kern(A), S := V ∩ R⊥ andT := V ⊥ ∩ R⊥. Define

c1 := min
x∈T \{0}

xT Ax

xT x
, c2 := min

x∈V \{0}
xT Bx

xT x
, c3 := ‖A‖2.

SinceA is positive semidefinite onV ⊥ we havec1 > 0 and usingxT Bx =
p∑
k=1

ρk(w
T
k x)

2 ≥ 0 we infer that the matrixB is positive semidefinite overRn and

positive definite overV implying c2 > 0. Givenx ∈ Rn there existr ∈ R, s ∈ S
andt ∈ T such thatx = r + s + t sinceRn = R⊕ S

⊕
T . Therefore

xT (A+ µB)x = (s + t)T A(s + t)+ µ(r + s)T B(r + s)
≥ c1|t|2− 2c3 · |s| · |t| − c3|s|2+ µ · c2 · (|r|2 + |s|2)
= (√c1|t| − c2/

√
c1|s|)2 + (µc2 − c3− c2

2/c1)|s|2.
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This impliesA + µ0B � 0 whereµ0 = (c3 + c2
2/c1)/c2. Settingτ̄ = µ0 · ρ we

obtainA+
p∑
i=1

τiwiw
T
i = A+ µB +

p∑
i=1

(τi − τ̄i )wiwTi � 0. 2

A variant of Lemma 8 is presented in [14] (Debreu’s Lemma). We now state the
main result.

THEOREM 1. Let x∗ be a local minimizer of problem (Q) fulfilling Assumption
2. Given a partition setS 3 x∗ define

δi(S) := −min
x∈S
∇qi(x∗)T (x − x∗), i ∈ B(x∗). (9)

Letwi := ∇qi(x∗) for i ∈ B(x∗) ∪ Ieq and

A(τ, σ ) := ∇2q0(x
∗)+

∑
i∈B(x∗)

τiwiw
T
i +

∑
i∈Ieq

σiwiw
T
i .

Let τ̂ ∈ RB(x∗) and σ̂ ∈ RIeq be parameters fulfillingA(τ̂ , σ̂ ) � 0 and τ̂i ≥ 0
for i ∈ B(x∗) (which exist according to Lemma 8). Assume that the constraints of
problem (QE(S)) are defined by

wTi (x − x∗)(wTi (x − x∗)+ δi(S)) ≤ 0, i ∈ B(x∗) (10)

wTi (x − x∗) ≤ 0, i ∈ B(x∗) (11)

qi(x) = 0, i ∈ Ieq (12)

qi(x)
2 = 0, i ∈ Ieq (13)

qi(x) ≤ 0, i ∈ Îin. (14)

Then

9∗e (S) = q∗(S) for all S ⊂ Sτ̂
where

Sτ̂ := {x ∈ Rn : 0≥ wTi (x − x∗) ≥ −
λ∗i
τ̂i
, i ∈ B(x∗) and τ̂i > 0}.

Proof. Choose a proper indexing of the constraints of problem (QE) such that
α = (α(1), α(2), α(3), α(4), α(5)), whereα(1), α(2), α(3), α(4) andα(5) pertain to the
constraints (10), (11), (12), (13) and (14) respectively. Assumeα(5) = 0. Then it
holdsLe(x∗, α) = q0(x

∗). From the Karush–Kuhn–Tucker condition

∇q0(x
∗)+

∑
i∈B(x∗)∪Ieq

λ∗i∇qi(x∗) = 0
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and from

∇Le(x∗, α) = ∇q0(x
∗)+

∑
i∈B(x∗)

(α
(1)
i δi(S)+ α(2)k )∇qi(x∗)+

∑
i∈Ieq

α
(3)
i ∇qi(x∗)

we obtain

∇Le(x∗, α) =
∑

i∈B(x∗)
(α

(1)
i δi(S)+ α(2)i − λ∗i )∇qi(x∗)+

∑
i∈Ieq

(α
(3)
i − λ∗i )∇qi(x∗).

Choosingα(1) = τ̂ , α(4) = σ̂ , α(3)i = λ∗i for i ∈ Ieq andα(2)i = λ∗i − τ̂iδi(S) for

i ∈ B(x∗) we have∇Le(x∗, α) = 0. If S ⊂ Sτ̂ we haveδk(S) ≤ λ∗k
τ̂k

for k ∈ B(x∗)
and τ̂k > 0 implying α(2)k = λ∗k − τ̂kδk(S) ≥ 0. Hence(α, x∗) fulfills (8) and by
Lemma 6 we conclude that9∗(S) = q∗(S). 2

From Theorem 1 it follows that the dual bound9∗e (S) defined by the above
redundant constraints matches withq0(x

∗) if the partition setS is small enough. To
our knowledge, only the linear programming bound of Epperly and Swaney (1996)
has this property.

5.3. COMPUTING OPTIMALITY CUTS

Based on Theorem 1 we can construct a cutting plane cutting off a given local
minimizer from the feasible set. A consequence of Theorem 1 is:

COROLLARY 1. Letx∗ be a local minimizer of problem (Q) fulfilling Assumption
2 and letH ⊂ Rn be a half-space such thatx∗ ∈ int H and� ∩ H ⊂ Sτ̂ . Then
q∗(H) = q0(x

∗), whereSτ̂ is defined as in Theorem 1.

A halfspace which meets the conditions of Corollary 1 defines an optimality cut
with respect tox∗. The following Lemma gives a method for constructingH .

PROPOSITION 2. Let x∗ be a local minimizer of problem (Q) fulfilling Assump-
tion 2 and letτ̂ ∈ RB(x∗) and µ̂ ∈ RIeq be parameters fulfillingA(τ̂ , µ̂) � 0 and
τ̂i ≥ 0 for i ∈ B(x∗) whereA(τ̂ , µ̂) is defined as in Theorem 1. Then

H = {x ∈ Rn : ηT (x − x∗) ≤ 1}

defines an optimality cut with respect tox∗ whereη :=
∑

i∈B(x∗)
− τ̂i
λ∗i
wi, wi :=

∇qi(x∗) andλ∗i are the Lagrange parameters corresponding tox∗.
Proof.Obviously, it holdsx∗ ∈ int H . LetKx∗ be the cone defined by

Kx∗ := {x ∈ Rn : wTi (x − x∗) ≤ 0 for i ∈ B(x∗)}.
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Let

Vj = {x ∈ Rn : wTj (x − x∗) = −δ∗j , wTi (x − x∗) = 0, i ∈ B(x∗) \ {j}}
for j ∈ B(x∗) and

V0 = {x ∈ Rn : wTi (x − x∗) = 0, i ∈ B(x∗)}
whereδ∗i = λ∗i

τ̂i
if τ̂i > 0 andδ∗i = ∞ else. It holdsηT (x − x∗) = 1 for x ∈ Vi

andi ∈ B(x∗) andηT (x − x∗) = 0 for x ∈ V0. HenceH ∩Kx∗ = conv{Vi : i ∈
B(x∗) ∪ {0}} and due toVi ⊂ Sτ̂ for i ∈ B(x∗) ∪ {0} we have

H ∩� ⊂ H ∩Kx∗ ⊂ Sτ̂ .
From Theorem 1 it follows thatq∗(Sτ̂ ) = q0(x

∗). Using Corollary 1 this proves the
assertion. 2

The parameter̂τ should be computed such that diam(Sτ̂ ) is as large as possible.
Sinceδ∗i /|wi| is an upper bound on the diameter ofSτ̂ along the directionwi this is

similar to maximizingδ∗i /|wi| for all i ∈ B(x∗) or to minimizing
∑

i∈B(x∗)

1

δ∗i
|wi| =

∑
i∈B(x∗)

τ̂i

λ∗i
|wi|. This motivates to computêτ by the following semidefinite program:

τ̂ ∈ argmin
∑

i∈B(x∗)

τi

λ∗i
|wi |

s.t. A(τ, µ) � 0 (15)

τi ≥ 0, i ∈ B(x∗)
τ ∈ RB(x∗), µ ∈ RIeq .

From Theorem 1 it follows that̂τ is well-defined ifx∗ fulfills Assumption 2. Note
that for the construction of an optimality cut it is sufficient to find a feasible point
of (15) which is a much simpler problem than solving (15).

6. Dual Bounds with Zero Duality Gap

For special cases of problem (Q) it is possible to define an extended quadratic
program which includes the redundant constraints of Theorem 1 with respect to
all global minimizers. We define such programs for the box-constrained and the
standard quadratic program. Using Theorem 1 we derive conditions which lead to
a zero duality gap of the corresponding dual bound.
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6.1. A DUAL BOUND FOR THE BOX-CONSTRAINED QUADRATIC

PROGRAMMING PROBLEM

The box-constrained quadratic program is defined by

global minimize q0(x)(BQ)
subject to x ≤ x ≤ x̄,

wherex, x̄ ∈ Rn. Consider the following extended box-constrained quadratic pro-
gram:

global minimize q0(x)

subject to x ≤ x ≤ x̄,(BQE)
(xi − xi)(xi − x̄i ) ≤ 0, 1≤ i ≤ n.

Obviously, problem (BQE) contains the redundant constraints of Theorem 1 with
respect to all global minimizers of problem (BQ). From this it follows that under
certain assumptions the dual bound of (BQE), denoted by9∗bqe, coincides with the
optimal value of (BQ). More precisely, the following holds.

PROPOSITION 3. Let x∗ be a local minimizer of problem (BQ) fulfilling As-
sumption 2. DefineB(x∗) := {i ∈ {1, .., n} : x∗i = x̄i or x∗i = xi and the

corresponding Lagrange multiplier is greater zero}. Let gi :=
∣∣∣ ∂q0(x

∗)
∂xi

∣∣∣ for i ∈
B(x∗) and let τ̂ ∈ Rn be a parameter (which exists according to Lemma 8) such
that∇2q0+ diag (τ̂ ) � 0, τ̂i ≥ 0 for i ∈ B(x∗) andτ̂i = 0 for i ∈ {1, .., n}\B(x∗).
If

gi ≥ (x̄i − xi)τ̂i for i ∈ B(x∗) (16)

thenx∗ is a global minimizer and9∗bqe = q0(x
∗).

Proof. We can assume thatx∗i = x̄i for all i ∈ B̂(x∗). The setSτ̂ readsSτ̂ =
{x ∈ Rn : 0 ≥ eTi (x − x∗) ≥ −λ∗i

τ̂i
, i ∈ B(x∗) andτ̂i > 0}. Sincegi = λ∗i and

0≥ eTi (x−x∗) ≥ xi− x̄i for all i ∈ B̂(x∗) from (16) it follows[x, x̄] ⊂ Sτ̂ , which
proves the statement due to Theorem 1. 2

From Lemma 6 it follows:

COROLLARY 2. Let Z∗ := argmin
x∈Rn

Lbqe(x, α
∗) whereLbqe is the Lagrangian

corresponding to (BQE) andα∗ is a solution of (3). Assume there exists a local
minimizer of (BQ) fulfilling the assumption of Proposition 3. Then there exist a
global minimizer of (BQ) inZ∗. If (BQ) has a unique solutionx∗ thenZ∗ = {x∗}.

This shows that all instances of problem (BQ) which fulfill the assumption
of Corollary 2 can be solved by simply computing9∗bqe. This can be done in
polynomial time and it is not necessary to compute a local minimizer. Note that
assuming that Assumption 2 is fulfilled at a pointx∗ then condition (16) can always
be satisfied if diam([x, x̄]) is diminished sufficiently.
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EXAMPLE 2. Consider again Example 1 :min{−xT x : 0 ≤ x ≤ e}, where
x ∈ Rn and e ∈ Rn is the vector of ones. The unique global minimizerx∗ = e

fulfills Assumption 2. Sinceλ∗ = g = 2e, B(x∗) = {1, .., n} and τ̂ = 2e it follows
thatx∗ fulfills (16).

6.2. DUAL BOUNDS FOR THE STANDARD QUADRATIC PROGRAMMING

PROBLEM

Another important quadratic program is the standard quadratic program defined by

global minimize q0(x)

subject to 0≤ x ≤ e,(SQ)
eT x − 1= 0,

wheree ∈ Rn is the vector of ones. Consider the extended quadratic program

global minimize q0(x)

subject to 0≤ x ≤ e,(SQE1)
xi(xi − 1) ≤ 0, 1≤ i ≤ n
eT x − 1= 0,

(eT x − 1)2 = 0.

A different extended quadratic program for problem (SQ) is

global minimize q0(x)

subject to x ≥ 0,(SQE2)
xixj ≥ 0, ij ∈ Ec (17)

eT x − 1= 0,

(eT x − 1)2 = 0

whereEc := {ij : 1 ≤ i < j ≤ n, ∂iiq0(x) − 2∂ij q0(x) + ∂jjq0(x) > 0} and
∂ijq0(x) denotes the second derivative ofq0(x) with respect to the variablesxi
and xj . Denote by9∗sqe1 and by9∗sqe2 the dual bounds of (SQE1) and (SQE2)
respectively. Problem (SQE1) contains the redundant constraints of Theorem 1
with respect to all global minimizers. Therefore, we can expect that a similar result
as in Proposition 3 holds for problem (SQE1) and (SQE2).

PROPOSITION 4. (i) It holds9∗sqe1 ≤ 9∗sqe2.
(ii) Let x∗ be a local minimizer of problem (SQ) fulfilling Assumption 2 and

l ∈ {1, .., n} be an index withx∗l > 0. Definegi := ∂q0(x
∗)

∂xi
− ∂q0(x

∗)
∂xl

for i ∈ B̂(x∗)
(whereB(x∗) is defined as in Assumption 2). Letτ̂ ∈ Rn andµ ∈ R be parameters
(which exist according to Lemma 8) such that∇2q0+ diag (τ̂ )+ µJ � 0, τ̂i ≥ 0
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for i ∈ B̂(x∗) and τ̂i = 0 for i ∈ {1, .., n} \B(x∗) whereJ ∈ R(n,n) is the matrix
of ones. If

gi ≥ τ̂i for i ∈ B(x∗) (18)

thenx∗ is a global minimizer of problem (SQ) and9∗sqe1 = 9∗sqe2 = q0(x
∗).

Proof. (i) Denote byL1(x, α) andL2(x, α) the Lagrange functions of (SQE1)
and (SQE2) respectively and let(x̂, α∗) be such thatL1(x̂, α

∗) = 9∗sqe1. >From
[18] it follows that the constraints (17) can be replaced by the constraints

xixj ≥ 0, 1≤ i, j ≤ n.
Let x ∈ Rn be a point fulfillingeT x − 1= 0. Then

xi(xi − 1) = −
∑

1≤k≤n,k 6=i
xixk, 1≤ i ≤ n+ 1.

This implies that there exist̂α such thatL1(x, α
∗) = L2(x, α̂) for all x ∈ Rn with

eT x = 1. From Lemma 2 and Lemma 4 it follows

9∗sqe1 = min
eT x=1

L1(x, α
∗) = min

eT x=1
L2(x, α̂) ≤ 9∗sqe2.

This proves the assertion.

(ii) The setSτ̂ readsSτ̂ = {x ∈ Rn : 0 ≥ eTi (x − x∗) ≥ −λ∗i
τ̂i
, i ∈

B(x∗) andτ̂i > 0}. >From ∇q0(x
∗) +

∑
i∈B(x∗)

−λ∗i ei + µ∗e = 0 we haveµ∗ =

− ∂q0(x
∗)

∂xl
andλ∗i = ∂q0(x

∗)
∂xi
+ µ∗ for i ∈ B(x∗). Sincegi = λ∗i and 0≥ eTi (x −

x∗) ≥ −1 for all i ∈ B̂(x∗) from (18) it follows [0, e] ⊂ Sτ̂ , which proves the
statement. 2

Similar as in Corollary 2 it follows from Lemma 6:

COROLLARY 3. LetZ∗1 := argmin
x∈Rn

Lsqe1(x, α
∗) and

Z∗2 := argmin
x∈Rn

Lsqe2(x, α
∗) whereLsqe1 andLsqe2 are the Lagrangian’s corres-

ponding to (SQE1) and (SQE2) respectively andα∗ is a solution of (3). Assume
there exist a local minimizer of (SQ) fulfilling the assumption of Proposition 4.
Then there exist a global minimizer of (SQ) inZ∗1 and inZ∗2. If (SQ) has a unique
solutionx∗ thenZ∗1 = Z∗2 = {x∗}.

In [16] the lower bound9∗sqe2 was computed for random examples up to 30
variables. The numerical results showed that very often9∗sqe2 matches with the
optimal value. Note that the redundant constraints of (BQE), (SQE) and (7) are
also used in [22] for defining so-called RLT-relaxations of nonconvex quadratic
programs.
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7. Conclusion

We presented an algorithm for solving problem (Q) based on optimality cuts. If
all global minimizers of problem (Q) fulfill Assumption 2 and a heuristic is used
which provides a local minimizer if a partition set is diminished sufficiently then
the algorithm terminates in finite time. For the implementation of the algorithm the
following methods are required:
1. A heuristicF(S). One possibility to defineF(S) is to use a Lagrange Heuristic

(see Remark 1) combined with a local search method. For special cases of
problem (Q) a specialized heuristic should be used (for example for quadratic
integer problems).

2. A tight lower bounding methodµ(S). These bounds can be computed as in
Proposition 4. Very important is a fast method for solving the Lagrangian
relaxation problem (3). Various methods for solving this problem exist and
are currently under investigation (see Section 3.4).

3. A method for computing an optimality cut. This is based on finding a feasible
point of problem (15). This can be done by checking if there existt̄ ∈ R+ such
thatA(t̄ · τ̃ , t̄ · µ̃) � 0 whereτ̃ andµ̃ are estimates for̂τ andµ̂ respectively
(see Proposition 2), which is equivalent to check if there existt̄ ∈ R+ such that
λ1(A+ τ̄B) ≥ 0 whereA,B ∈ R(n,n) andB is a positive semidefinite matrix.
From Lemma 8 it follows that̄t exists if and only if the corresponding local
minimizerx∗ fulfills Assumption 2.

We are currently implementing the lower bounding technique and the method for
obtaining optimality cuts in a B&B algorithm. Numerical results will be published
in a subsequent paper.
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