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Abstract. A central problem of branch-and-bound methods for global optimization is that often a
lower bound do not match with the optimal value of the corresponding subproblem even if the dia-
meter of the partition set shrinks to zero. This can lead to a large number of subdivisions preventing
the method from terminating in reasonable time. For the all-quadratic optimization problem with
convex constraints we present optimality cuts which cut off a given local minimizer from the feasible
set. We propose a branch-and-bound algorithm using optimality cuts which is finite if all global
minimizers fulfill a certain second order optimality condition. The optimality cuts are based on the
formulation of a dual problem where additional redundant constraints are added. This technique is
also used for constructing tight lower bounds. Moreover we present for the box-constrained and the
standard quadratic programming problem dual bounds which have under certain conditions a zero
duality gap.
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1. Introduction

In this paper we consider the following all-quadratic optimization problem:

global minimize go(x)
Q) subjectto ¢;(x) <0, i€l
Qi(x) = 0, i € qu

whereg; (x) := 3xT A;x+bl x+c;, Ay € R™™ b e R", ¢; € R, i € I;,UL,,U{0}.
It is assumed that the inequality constraints of problem (Q) are convex and the
equality constraints are linear.

Problem (Q) plays an interesting role in global optimization. Important special
cases of (Q) are for example the trust region problem with one or several ellipsoid
constraints, the box-constrained quadratic program and the standard quadratic pro-
gram. It is known that problem (Q) is NP-hard [12]. For applications and solution
methods we refer to [8, 2, 6, 13, 26, 27, 19, 20, 22, 3, 4, 21]. Many solution
methods for problem (Q) are based on the branch-and-bound (B&B) principle.
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A well-known difficulty of B&B algorithms is that often regions containing a
global minimizer have to be subdivided very often in order to get sharp lower
bounds. In large dimensions this can prevent the method from terminating in reas-
onable time. Almost all existing bounding methods for problem (Q) produce lower
bounds which usually do not match with the optimal value of the corresponding
subproblem. This can lead to infinitely many iterations of a B&B algorithm. Finite
termination of B&B algorithms can be proved often only for so-cakeoptimal
solutions.

We propose to useptimality cuts for avoiding this difficulty. An optimality cut
is a cutting plane which cuts off a part of the feasible set containing a local minim-
izer. In Section 2 we propose a B&B algorithm using optimality cuts which solves
problem (Q) in finite time under certain assumptions. The basis for the construction
of optimality cuts is Lagrangian relaxation of problem (Q) which we introduce in
Section 3. Based on these results we construct in Section 4 tight lower bounds and
derive in Section 5 optimality cuts. Moreover we present in Section 6 for the box-
constrained and the standard quadratic programming problem dual bounds which
have under certain conditions a zero duality gap. We finish in Section 7 with a short
discussion on the implementation of the algorithm and with some conclusions.

2. A Finite Branch-and-Bound Algorithm

In this section we describe a B&B algorithm for solving problem (Q) in finitely
many iterations. We begin with the description of basic operations of a B&B al-
gorithm.

2.1. BASIC B&B OPERATIONS

Partition Sets. Denote by2 C R” the feasible set of problem (Q). L&t .., S, be
subsets oR” such that

JSsioQ and intS;nintS; =@fori # ;.
i=1

Each subsef; is called partition set and the collection of partition sets denoted by
P :=1{81, .., S,} is called a partition of?.

Subdivision Methods.A subdivision method defines from a given partition a
new partition by subdividing one or several partition sets. A nested subsequence of
partition setqS;}, (i.e.S;.1 C S; Vi), is called exhaustive §; shrinks to a unique

o

point, i.e.ﬂ S; = {x}. A partition method is called exhaustive if every nested

i=1
subsequence of partition sets generated by the subdivision method is exhaustive.
Examples for exhaustive partition methods are given in [12].
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Lower Bounds.Let S be a closed subset &' The optimal value ofo(x) over
QN Sis denoted by

min QNS #£0
q*(S) = [ XEQQSQO(X) # ) (1)
00 : else
A lower bound ofg*(S) is denoted byx(S). A lower bounding method is called
tight if

. L qo®) : ifreQ
LTOM(S’) N { oo : else
where{S;} is an exhaustive nested subsequence @m = {x}.
i=1
Heuristics. A heuristic F(S) € R” for problem (Q) is defined by the following
two steps:

(i) In the first step a poinf € S is computed which should be close to a global
minimizer ofgo over S N Q if S N Q2 # @. This can be done by simply choosing
an arbitrary point inS or by applying a more involved procedure as for example a
Lagrange Heuristic (see Remark 1).

(ii) In the second step the initial poiat is refined by applying a local search
methodLZ S(x) starting from the poing for minimizing an exact penalty function
as for example miP (x) := go(x) + ; max{0, g; (x)} + :1g: (x)| where

ple m q l-;,.,,p X0, g; (x)} l.;m”'q |
pi,i € I;, U I,,, are sufficiently large penalty parameters.

Note that the point computed kyS(x) must not be in2 N S and is not ne-
cessarily a strict local minimizer. We denote Byx*) the region of attraction of
a local minimizer ofP (x) with respect to the local search method, Ggx*) =
{x e R": LS(x) = x*}. We require the following property:

ASSUMPTION 1. For all global minimizersc* of problem (Q) there exist a closed
ball Bs(x*) with centerx* and diamete > 0 such thatB;(x*) C ®(x*).

Assumption 1 can be satisfied for example if the global minimizers of (Q) fulfill a
certain constraint qualification (see [25]; Satz 3.6.5).

Upper Bounds.An upper bound of*(S) is defined by

qgo(F(S)) : if F(S) e Q
00 : else

y(S) = {

Optimality Cuts. Given a local minimizex* € Q of problem (Q) we call a
halfspaceH := {x € R" : n”x < y} wheren € R” andy € R an optimality cut if
x* e int Handg*(H) = go(x*).
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2.2. BRANCH-AND-BOUND USING OPTIMALITY CUTS

The following B&B algorithm solves problem (Q) in finite time using optimality
cuts and tight lower bounds. We denotedy; the actual estimate of the optimal
value and by (S) a tight lower bounding method.

ALGORITHM 1.

1 determineS c R” such thatS > 2, computew(S), setP = {S}
andq,,; = +o0;

2 repeat
3 chooseS € £ such thatu(S) = min u(S);
(S
4  computeF(S);
5 if ¥ (S) < gopr @Ndy (S) # o0
6 Setgapt = V(S)l R
7 try to compute an optimality cul with respect taF (S);
8 if this is possible : compute for afl € £ : (S \ int H),
9 setP ={S\intH :S e P}andgoto12
10 endif

11 subdivideS into Sy, .., S,, computeu(Sy), .., u(S,)
and set? = P U {Sy, .., S,} \ {S};

12 delete elements € 2 with 1(S) > g,

13 until £ = 4.

PROPOSITION 1. Assume thaf2 # @, the lower bounding methaqd(S) is tight
and the subdivision method of Algorithm 1 is exhaustive. Assume further that As-
sumption 1 is fulfilled and it is possible to make an optimality cut with respect to
if x is a global minimizer of problem (Q). Then Algorithm 1 terminates after finitely
many iterations.

Proof. Assume that Algorithm 1 does not terminate in finite time. Then there
exists a nested subsequence of partition elemghisgenerated by Algorithm
1 such thatu(S;) is the global lower bound of the corresponding partition, i.e.
w(S;) = EQLQM(S), implying u(S;) < g*. Since the partition method is exhaustive

we havﬁ S; = {x}. We show now that the sequen®} is finite which proves the
i=1

assertion. Ift is a global minimizer of (Q) there exigte IV such thatS;, C ®(x)

due to Assumption 1 implying”(S;) = x. In this case the algorithm makes an

optimality cut with respect t@ proving the finiteness dfS;}. If x is not a global

minimizer then eitheg ¢ Q, implying u(S;) — oo, orx € Q andgo(x) > ¢*,

implying 1 (S;) — go(x) sinceu(S;) is tight. In both cases it followg (S;) > g¢*

if i is sufficiently large. This contradicis(S;) < ¢*.
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3. Lagrangian Relaxation

We describe now the method for obtaining lower bounds for problem (Q) based on
Lagrangian relaxation.

3.1. NOTATION

Let I C IN be an index set. We define B/ the |/|-dimensional Euclidean space
with the vector indexing defined by, i.e. R = {{x;}ic; : x;, € R,i € I}. We
use the notatiom > 0 for a matrixA to be positive semidefinite. The linear space
spanned by vectors, .., v, is denoted by spafv,, .., v,}, a linear space which
is orthogonal to a given linear spageis denoted byv+ and the null-space of a
linear map defined by a matrix is denoted by kerm. Furthermorgx| denotes
the Euclidean norm of a vectdfA ||, denotes the two-norm of a matrix ang(A)
denotes the smallest eigenvalue of a matrix.

3.2. BASIC PRINCIPLE

The Lagrange function of problem (Q) is the quadratic form

L(x, @) = qo(x) + Y _ ;g (x),

iel
wherel := I;, U I,,. Consider the Lagrange problem

V() = m]gg L(x,a). 2)

The dual bound is defined by

U* :=max WY(ax)subjectte; >0, i€, 3)

acR/!

By weak duality we have
g —wv*>0.

The quantityy* — ¥* is called duality gap. It is well-known that due to the noncon-
vexity of problem (Q) it is possible that a nonzero duality gap can occur. However,
if (Q) is convex and satisfies a Slater condition tlggn- w* = 0. Note that most

of the existing lower bounding methods do not have this useful property.

3.3. EQUIVALENT FORMULATIONS OF THE DUAL BOUND

Interestingly (3) can be formulated as a semidefinite program (SDP).
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LEMMA 1. Leti e R” be an arbitrary point,Q(«, y) € R"+17+D the matrix
defined by

_ AVALGE, @) iV.LE, @)
Q(a, y) = ( %ZVXL()/(\Z, O[)T 124()2, Ol) —y )

and$ c R’ x R the set defined by

8:={(a,y) eR' xR:Q(a,y) > 0,&; > 0,i € I,,}. (4)

Then
U* = max y. 5
fnax y 5)

Proof. Let (&, y) be a solution of (5). Sinc®(a, y) > 0 we have

(2) s ("y)
1 Q@ M 4

1
=S - DIVILE &)(x — ) 4+ ViLE, @) (x — ) + L&, @) —
=Lx,a)—y>0 VxeR"
This impliesy < m&n L(x,&) < ¥*. Now let («*, x*) be a solution of (3), i.e.
xeR®
U* = L(x*, a*). If ¥* = —oco we have obviously* < y. If U* > —cc it follows
2 * * * * H : * * lVZL()C*,O[*) O
VZL(x*, a*)>0andVL(x*, «*)=0implying Q (o™, ¥*) = 2 '~ 0 0 >
0. Therefore(a*, ¥*) € $ and hencel* < 3. O
The next Lemma gives a further equivalent formulationbat

LEMMA 2. Letl;, C I andI, C I be the index sets of linear constraints
and quadratic constraints of problem (Q) respectively. Define the Lagrangian with
respect to quadratic constraints

Ly(x, @) :=qo(x) + ) igi(x),

iely
the feasible set with respect to linear constraints
P:={xeR":qx)<0,ie€liyNliqj(x)=0,j¢e lyN i}
and the positive semidefinite cone
C:={aeR":0;>0,i€l,NI, VL, (x,a) > O}.
If C # ¢ then
Ut = max{l)‘crliqu(x, a):a e Ch (6)
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Proof.Leta™ = (o, /) be a solution of (3) where; corresponds to quadratic
constraints and;* corresponds to linear constraints of (Q). Fram# ¢ it follows
a, € C.Itholds

U = {max¥(a) :a; > 0,i € I;,)}
= {maxW (e, o) s 0 > 0,0 € Lin N Lijn}
= {max mﬂénL(x, oe;;, o) :a; >0i € ;,,N I}
xeRn

=minL,(x,a") < ¥*
xeP q( q)_ q

where W7 is the optimal value of the right-hand side of (6). The last equation
follows from strong duality sincé, (x, ;) is convex (see [12]). On the other hand
we have

v = max{glifr)Lq(x, a,) 1o, € C)

= max{m]kn L(x,a):a; > 0,i € I;,, V2L(x, @) > 0} < ¥*,
xelRn
The last equation follows from strong duality sinég(x, «,) is convex. This
provesw* = W7 a

Note that by including quadratic box constrairits — x;)(x; — x;) < 0, 1 <
i < ninto (Q) it can be shown that # ¢ (see Lemma 4).

3.4. COMPUTING ¥*

In the last years many methods for computir have been proposed. These
methods can be divided into three classes. The first class are methods for solving a
semidefinite program similar as (5), see for example, [9] for solution methods and
applications of semidefinite programming. Most of these algorithms are interior
point methods which usually converge fast if the size of the problem is moderate.
However, for large scale problems the convergence can be slow if it is not possible
to exploit problem structure. The second class are methods based on eigenvalue
optimization. In [11] the Lagrangian relaxation bound for the max-cut problem is
computed by formulating (3) as an eigenvalue optimization problem and solving
this problem by the so-called spectral bundle method. In [11, 10], numerical results
for large scale structured problems are presented indicating that this bundle method
is faster than an interior point method. A third approach for compufitigis
proposed by [24]. This approach is based on maximizing an exact penalty func-
tion overR’. Numerical results on this approach using the so-called r-algorithm
for maximizing a nonsmooth penalty function are reported in [24]. An advantage
of using nonsmooth optimization methods is that they often can exploit problem
structure making them attractive for large scale structured optimization problems.
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4. Improving Dual Bounds

Several methods for improving dual bounds are known (see [15]). One of the most
promising method is to add redundant constraints to the original problem. We will
apply this approach to the following subproblem of (Q).

4.1. THE SUBPROBLEM

Let S C R” be a partition set such th& N S # @. We assume in the sequel that
S is a polytope defined by some linear inequalities, $.e= {x € R" : ¢;(x) <

0, i e I} whereg; fori € I, are linear functions. The quadratic program with
respect to a partition sétreads

global minimize go(x)
(Q(S))  Subjectto gi(x) <0, i€l Ul
gi(x) =0, i¢€l,.

We denote byr*(S) the dual bound of (Q(S)).

4.2. ADDING REDUNDANT CONSTRAINTS

Shor proposed in [23, 24] a method for improving the Lagrangian relaxation bound
by introducing redundant constraints. lgetx) be quadratic forms such that(x) <
Ofori € Ij, \ (I, UI) andg;(x) = Ofori € I, \ L, forallx e @ns
wherel,, > I,, U I, andfeq D 1.4 Consider the following extended all-quadratic
program:

global minimize go(x)
(QE(S)) Subjectto ¢i(x) <0, ie I,
qi(x) =0, iel,

We denote by (S), L.(x, ) andW}(S) the optimal value, the extended Lag-
rangian and the dual bound of (QE(S)) respectively.

LEMMA 3. It holds

WH(S) = V(S = 47(S) = ¢, (9.

Proof.Since2N S is not changed by the redundant constraints we haug) =
q*(S). Denote byw, the Lagrange function of problem (QE(S)). Since dénc
domW, it follows W*(S) < W (S). O

REMARK 1. A solution of the dual problem of (QE(S)) can be used to define a
so-called Lagrange heuristic for approximately computing a global minimizer of
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(QP(S)). Letx* € argmaXW,(a) : a; > 0,i € I;,}. Thent € argminL,(x, a*)

xeS
is an approximation of global minimizer @b over 2 N S. The equality of this
heuristic depends strongly on the added redundant constraints (see for example,
[7] and [17]).

4.3. TIGHT LOWER BOUNDS

The B&B-algorithm presented in Section 2 requires tight lower bounds. Including
quadratic box-constraints into (QE(S)) it can be shown #jatS) is a tight lower
bound.

LEMMA 4. LetS c R" be a compact partition set. Assume that the quadratic
inequality constraints

(X — X (SN —x,(8) =0, 1<k=n (7)

are included in the lower bounding program (QE(S)) wheyes) := minx,» and
xi(S) = maXx, forl <i <n.ThenC # ¥ whereC is defined as in Lemma 2 and

w(S) := \IJ (S) is a tight lower bounding method.

Proof. Choose a proper indexing of the constraints of (QE(S)) suchathat
(a®, a@) wherea® ¢ R”" pertains to the constraints (7) aat? pertains to the
remaining constraints. Defing := max0, —11(V?go)} and denote by € R”
the vector of ones. TheW?L,(x, (yoe,0)) > 0 provingC # @. Let {S;} be an

exhaustive nested sequence vﬁﬂp = {x}. We consider firstly the casee Q. Let
k=1
= arg mgnLe(x, (yoe, 0)). From Lemma 2 it follows
XEJk

0 < go(®) — W (Sk) < qo(%) — Le(X*, (voe, 0))

< 1g0(®) — qo(E)| + 0 ) _ Ix;(SK) — % (SO I>
i=1
Hencek lim W*(S;) = go(X) sincex* converges towards. Now assumet ¢ Q.
— 00

This implies that there exist an indéxe I such that eitheg,(x) > 0 and! €

I, or gi(X) # 0 and [ € I,. Choosey; = y; anda¥ = y,e wherey; =

sign (¢; (%)) diam (Sy)~* andy, = yo + max0, —r1(V?¢g;)} diam(S,)~* and set

the remainingy;’s equal to zero. Lef* := arg ngsinLe(x, «). SinceV2L,(x, a) =
XESk

0 from Lemma 2 it follows

WH(S) = Lo, @) = qo(&*) + y1q:(F*) + O(diam (Sp)).
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Hencek lim W*(S;) = oo sincex* converges towards. This proves thap(S) =
—00
W*(S) is a tight lower bounding method. O

The result of Lemma 4 applies also to the general problem (Q) with (pos-
sibly) nonconvex constraints. Note that the lower bound used in the global op-
timization methodx-BB [1] is obtained by choosing a specific valuesuch that
V2L.(x,a) = 0. >From this it follows that in generalr*(S) is more accurate than
the«-BB bound.

4.4, CLOSING THE DUALITY GAP

We discuss now if the duality gap of problem (QE(S)) can be closed by adding
redundant constraints. The duality gap of problem (QE(S)) is studied in [5] for
special cases. If problem (QE(S)) is convex satisfying a Slater condition there is
no duality gap. Also for the trust region problem with one ellipsoid constraint it is
known that the duality gap is zero. However, in the presence of two ellipsoid con-
straints a nonzero duality gap can occur. Shor proved in [23] that problem (QE(S))
has a nonzero duality gap if and only if the objective function of an equivalent
unconstrained polynomial programming problem can be represented as a sum of
squares of other polynomials. However, in practice it is not known in general how
to compute the polynomials. The following simple result gives a theoretical answer
to the question if it is possible to close the duality gap of problem (QE(S)) by
adding a single quadratic constraint.

LEMMA 5. Assume that the inequality constragit(S) — go(x) < Ois included
in problem (QE(S)). Thew}(S) = g*(S).

Proof. Choosing the Lagrange parameter corresponding to the inequality con-
straintg*(S) —qgo(x) < 0 equal to one and setting the remaining Lagrange paramet-
ers zero gived..(x, o) = ¢*(S) implying W (S) > ¢*(S). Sincew;(S) < ¢*(S)
the statement is proved. O

Of course, Lemma 5 is not very useful in practice since the optimal vgli®
not known in advance. The following simple global optimality criterion provides a
more constructive condition.
LEMMA 6. Let] := I, U I,,. It holds W*(S) = ¢*(S) if and only if there exist
& € R andz € N S such that

&; > Oforalli eI, L.(%, &) = qo(X), VL.(%,&) =0
and V2L, (%, &) > 0. (8)

Proof. Let «* be a solution of (3) and let* be a global minimizer of problem
(Q(S)). If WX (S) = ¢*(S) it follows x* € argminL, (x, «*). Hence(e*, x*) fulfills

xeR”?

condition (8).
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Now let (@, x) be a point satisfying (8). Thew (S) < ¢*(S) < go(x) =

mﬂ{n L.(X, ) < WX(S). HenceW:(S) = ¢*(S). a
X€e n

5. Optimality Cuts

Using the previous results we describe now a method for constructing optimality
cuts for problem (Q) based on Lagrangian relaxation.

5.1. ASSUMPTIONS

For constructing an optimality cut with respect to a local minimizeof problem
(Q) we have to assume that fulfills the following assumption.

ASSUMPTION 2. Let x* be a local minimizer of problem (Q). There exist cor-
responding Lagrange multipliers* € R’ and the HessiarV2go(x) is positive
semidefinite over?, i.e.

yI'V2qo(x)y > Oforall y e T%,
where the extended tangent spdteis defined by
T :={x e R": Vq;(x*)"x =0fori € B(x*) U I,,}
and
B(x*) :={i € [, : .} > 0}
is the index set corresponding to positive Lagrange multipliers.

We give now several conditions implying Assumption 2.

LEMMA 7. Letx* be a local minimizer of problem (Q) antd* € R’ be the
corresponding Lagrange multiplier fulfilling the strict complementarity condition:

A >0 for i€ AR
where
AX) i={i € I; : gi(x*) =0}

is the index set of active constraints. The following conditions imply Assumption 2:
(i) the pointx* fulfills the modified second order optimality condition: the Hessian
V240(x) is positive semidefinite over the tangent spagedefined by

T = f{x € R": Vg;(x*)"x = 0fori € AGX*) U L,};
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(i) the constraints of problem (Q) are linear and fulfills the second order optim-
ality condition: the HessiaV2L(x*, 1*) is positive semidefinite over the tangent
spaceT,+;
(i) the constraints of problem (Q) are linear and* is a regular point, i.e. the
vectors{Vg; (x*) : i € A(x™) U I} are linearly independent.

Proof. (i) From the strict complementarity condition it follows(x*) = B (x™).
This impliesT 1 = T+ which proves the assertion.

(i) Since the constraints of problem (Q) are linear it hoWfd. (x, 1) = V2go(x).
Therefore (ii) is equivalent to (i) in this case.

(i) Since a local minimizer which is a regular point fulfills the second order
optimality condition, (iii) implies (ii). a

EXAMPLE 1. Consider the following exampl@in{—x"x : 0 < x < e}, where

x € R"ande € R” is the vector of ones. This problem has a unique global
minimizerx* = e fulfilling the strict complementarity condition. From Lemma 7
(iii) it follows that x* fulfills Assumption 2.

5.2. THE MAIN THEOREM

In this section we present the main Theorem for deriving optimality cuts. We begin
with the following result.

LEMMA 8. LetA € R™™ be a symmetric matrix which is positive semidefinite
over the linear subspace spéws, .., w,}= wherew; € R*,1 < i < p. Then
there existt € R” such that

p

A+ Z rw;w! is positive semidefinite for afl > 7.
i=1

P
Proof.Let B := ZpiwiwiT wherep; > 0,1 <i < p.LetV := span{wy, .., w,},
i=1
R := kern(A), S := VN Rt andT := VN R*L. Define
xT Ax xTBx

, c2 = min =
xeV\{0} x'x

c1:= min

, c3 = ||All>.
xeT\(0} xTx 2= 42

Since A is positive semidefinite oV~ we havec; > 0 and usingx’ Bx =
P

Z ,ok(wka)2 > 0 we infer that the matrixB is positive semidefinite ovéR” and

k=1
positive definite oveV implying ¢, > 0. Givenx € R” there existr € R,s € §
andt € T such thatr =r + s + ¢ sinceR" = RP SEP T. Therefore

xTA+uB)x=6+0DTAG+10) +u@r+)T'Br +5)
> cq)t]? = 2c3 - Is| - |t] — cals|? 4+ - ca - (Ir[> + Is]?)

= (Jeilt] — ca/Jfe1ls)? + (uez — c3 — c3/ca)ls |
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This impliesA + poB > 0 wherewo = (c3 + ¢3/c1)/c2. Settingt = uo - p we

p p
obtainA + ) "tww] = A+ uB+ Y (t — iHwiw/ = 0. O
i=1 i=1

A variant of Lemma 8 is presented in [14] (Debreu’s Lemma). We now state the
main result.

THEOREM 1. Letx* be a local minimizer of problem (Q) fulfilling Assumption
2. Given a partition sef > x* define

8:(8) == — migl Vg (x)T(x — x%), e B@Y). 9)
X€
Letw; := Vg;(x*) fori e B(x*) U I, and

A(t, 0) 1= V3qo(x*) + Z riw,-wiT + Z o*iwiwl-T.

ieB(x*) i€y

Let? € RE™Y andé e R be parameters fulfillingd(z,6) = Oandt; > 0
fori € B8(x*) (which exist according to Lemma 8). Assume that the constraints of
problem (QE(S)) are defined by

wl (x — x)(w! (x —x*) +8;(5)) <0, ieB(x* (10)
w/(x —x*) <0, ieBx" (12)
gi(x) =0, i€l (12)
qi(x)* =0, i€l (13)
gi(x) <0, i€l (14)
Then

WA(S) = g*(S) forall S C S;

where

AF
S;:={xeR":0>w (x—x*)>—=, ieBx*"andt > 0).
T.

1

Proof. Choose a proper indexing of the constraints of problem (QE) such that
a =@, a? a® a?® a®), whereaV, a@®, a®, «® anda® pertain to the
constraints (10), (11), (12), (13) and (14) respectively. Assuffle= 0. Then it
holdsL,(x*, «) = go(x*). From the Karush—Kuhn-Tucker condition

Vaox )+ Y MVgi(x*)=0

i€B(x)Uly
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and from

VL(x* @) = Vgor) + Y (a8:(8) + )V 0" + Y o P Vg (x¥)

ieB(x*) iEIEq

we obtain

VLG a)= Y (@88 + o7 —i)Vgi(x) + Y (@ — A))Vaq; (x").

ieB(x*) iEIEq

Choosinge® = £, a® =, 0 = i fori € I, anda® = A* — £,8;(S) for
i € B(x*)we haveVL,(x*,a) =0.If § C S; we haves,(S) < % fork € B8(x*)

and?, > 0 implyinga\? = Af — %8:(S) > 0. Hence(, x*) fulfills (8) and by
Lemma 6 we conclude thdt*(S) = ¢*(S). a

From Theorem 1 it follows that the dual bound (S) defined by the above
redundant constraints matches wjtfix*) if the partition setS is small enough. To
our knowledge, only the linear programming bound of Epperly and Swaney (1996)
has this property.

5.3. COMPUTING OPTIMALITY CUTS

Based on Theorem 1 we can construct a cutting plane cutting off a given local
minimizer from the feasible set. A consequence of Theorem 1 is:

COROLLARY 1. Letx* be alocal minimizer of problem (Q) fulfilling Assumption
2 and letH c R” be a half-space such that € int HandQ N H C S;. Then
q*(H) = go(x*), whereS; is defined as in Theorem 1.

A halfspace which meets the conditions of Corollary 1 defines an optimality cut
with respect toc*. The following Lemma gives a method for constructidg

PROPOSITION 2. Letx* be a local minimizer of problem (Q) fulfilling Assump-
tion 2 and lett € R3“) and /i € R’ be parameters fulfillingd(z, /1) = 0 and
7; > 0fori € B(x*) whereA(z, 1) is defined as in Theorem 1. Then

H={xeR" :pT(x —x*) <1}
defines an optimality cut with respect 16 wheren := Z ——wj, w; =
ieB(x*) i
Vg (x*) and A} are the Lagrange parameters corresponding:to
Proof. Obviously, it holdsx* € int H. Let K, be the cone defined by

Kooi={x eR": wl (x —x*) < 0fori € B(x")}.
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Let

Vi={xeR" :wl(x —x") = =8, w/ (x —x") =0,i € B\ {j}}
for j € B(x*) and

Vo={x eR":wl(x —x*) =0,i € B(x")}

wheres’ = ’i— if 7; > 0 ands* = oo else. It holdsy” (x — x*) = 1 forx € V;
andi € 8(x*) andn” (x —x*) = 0forx € Vo. HenceH N K« = conv{V; :i e
B(x*) U {0}} and due tov; C S; fori € B(x*) U {0} we have

From Theorem 1 it follows that*(S;) = go(x*). Using Corollary 1 this proves the
assertion. O

The parametet should be computed such that didf) is as large as possible.
Sinces’/|w;| is an upper bound on the diameterSfalong the directionw; this is

similar to maximizings; /|w;| for all i € B(x*) or to minimizing » S lwil =
ieB(x*)

A

Ti . . A . . ..
Z F|wl~|. This motivates to computeby the following semidefinite program:
ieB(x*) i
~ . T
7 € argmin —|w;
gmin > <l
ieB(x*) !
s.t. A(t,u) =0 (15)

; >0, i€ B(x*)
T € RO ) e Rler,

From Theorem 1 it follows that is well-defined ifx* fulfills Assumption 2. Note
that for the construction of an optimality cut it is sufficient to find a feasible point
of (15) which is a much simpler problem than solving (15).

6. Dual Bounds with Zero Duality Gap

For special cases of problem (Q) it is possible to define an extended quadratic
program which includes the redundant constraints of Theorem 1 with respect to
all global minimizers. We define such programs for the box-constrained and the
standard quadratic program. Using Theorem 1 we derive conditions which lead to
a zero duality gap of the corresponding dual bound.
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6.1. A DUAL BOUND FOR THE BOX-CONSTRAINED QUADRATIC
PROGRAMMING PROBLEM

The box-constrained quadratic program is defined by

(BQ) global minimize go(x)
subjectto x <x <x,

wherex, x € R". Consider the following extended box-constrained quadratic pro-
gram:
global minimize go(x)
(BQE) subjectto x <x <%,
(xi —x)(x;i —x) <0, 1<i=<n.

Obviously, problem (BQE) contains the redundant constraints of Theorem 1 with
respect to all global minimizers of problem (BQ). From this it follows that under
certain assumptions the dual bound of (BQE), denoted}y, coincides with the
optimal value of (BQ). More precisely, the following holds.

PROPOSITION 3. Let x* be a local minimizer of problem (BQ) fulfilling As-
sumption 2. DefineB(x*) := {i € {1,..,n} : x/ = X; orx} = x, and the
corresponding Lagrange multiplier is greater zerdlet g; := ‘%‘ fori e
B(x*) and lett € R" be a parameter (which exists according to Lemma 8) such
that V2go+ diag (f) > 0, 7; > Ofori € B(x*) andt; = Ofori e {1, .., n}\ B(x*).
If
g > (x; —x.)fi for ie o{B(X*) (16)

thenx* is a global minimizer and;; , = go(x™).

Proof. We can assume thaf' = x; for all i B(x*). The setS; readsS; =

(xeR":02ef(x—x%) > —%, ieB@*)and > 0). Sinceg; = A7 and
0>el(x—x*)>x,—x foralli e B(x*) from (16) it follows[x, x] C S;, which
proves the statement due to Theorem 1. a

From Lemma 6 it follows:
COROLLARY 2. Let Z* = argmlanqL(x a*) whereL,,, is the Lagrangian

corresponding to (BQE) and* |s a solution of (3). Assume there exists a local
minimizer of (BQ) fulfilling the assumption of Proposition 3. Then there exist a
global minimizer of (BQ) irZ*. If (BQ) has a unique solution* thenZ* = {x*}.

This shows that all instances of problem (BQ) which fulfill the assumption
of Corollary 2 can be solved by simply computinig;, ,. This can be done in
polynomial time and it is not necessary to compute a local minimizer. Note that
assuming that Assumption 2 is fulfilled at a pairitthen condition (16) can always
be satisfied if diam[x, x]) is diminished sufficiently.
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EXAMPLE 2. Consider again Example 1min{—x"x : 0 < x < e}, where
x € R"ande € R” is the vector of ones. The unique global minimizér= e
fulfills Assumption 2. Since* = g = 2¢, B(x*) = {1, .., n} andt = 2¢ it follows
that x* fulfills (16).

6.2. DUAL BOUNDS FOR THE STANDARD QUADRATIC PROGRAMMING
PROBLEM

Another important quadratic program is the standard quadratic program defined by

global minimize go(x)
S subject to O<x <e,
(5Q) e'x —1=0,

wheree € R" is the vector of ones. Consider the extended quadratic program

global minimize go(x)

(SQE1) subject to O<x <e,
xi(xi—1) <0, 1<i=<n

elx —1=0,

(e"x —1?=0.
A different extended quadratic program for problem (SQ) is

global minimize go(x)
(SQE2) subjectto x>0,

xix; >0, ijekE, (7)
elx —1=0,
(e"x—1%2=0

whereE, = {ij : 1 < i < j < n,9;;q0(x) — 20;jq0o(x) + 9;;q0o(x) > O} and
di;qo(x) denotes the second derivative @f(x) with respect to the variableg
andx;. Denote bywy ; and byWw; , the dual bounds of (SQE1) and (SQE2)
respectively. Problem (SQE1) contains the redundant constraints of Theorem 1
with respect to all global minimizers. Therefore, we can expect that a similar result
as in Proposition 3 holds for problem (SQE1) and (SQE2).

PROPOSITION 4. (i) It holds W7 ,; < W7 .

(i) Let x* be a local minimizer of problem (SQ) fulfilling Assumption 2 and
I € {1, ...n} be an index with > 0. Defineg; := 0% — ""3—)(;) fori € B(x*)
(whereB (x*) is defined as in Assumption 2). lzet R” andu € R be parameters
(which exist according to Lemma 8) such thefiyo + diag (t) + uJ = 0,7 > 0
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fori € B(x*) and?; = Ofori € {1, ..,n} \ B(x*) whereJ € R"™" is the matrix
of ones. If

g >1 fori e B(x") (18)

thenx* is a global minimizer of problem (SQ) anigf, ,; = V7, , = go(x™).

Proof. (i) Denote byLi(x, ) and L»(x, «) the Lagrange functions of (SQE1)
and (SQE2) respectively and Iet, «*) be such that,(x, «*) = V7, ;. >From
[18] it follows that the constraints (17) can be replaced by the constraints

xix; >0, 1<i,j<n.
Letx € R" be a point fulfillinge” x — 1 = 0. Then

X —1) = — Z xixe, 1<i<n+Ll
1<k<n,k#i

This implies that there exigt such thatl,(x, «*) = Lo(x, @) for all x € R" with
e’ x = 1. From Lemma 2 and Lemma 4 it follows

*

Ve o= min Li(x,a®) = min La(x, &) < W7 ,.
el'x=1 T 4

sqe
el x=

This proves the assertion.

(i) The setS; readsS; = {x € R" : 0 > e/ (x — x*) > —AT— i €
B(x*) andf; > 0} >From Vgo(x*) + > —Afe; + pu'e = 0 we haveu* =
ieB(x%)

—% andir = 2090 4 for i € B(x*). Sinceg; = AF and 0> e (x —
x*) > —1foralli € B(x*) from (18) it follows [0, e] C S;, which proves the
statement. 0O

Similar as in Corollary 2 it follows from Lemma 6:

COROLLARY 3. LetZ} := argminL,,.1(x, «*) and
xeRn
Z3 = argminL,.»(x, «*) whereL,,.; and L., are the Lagrangian’s corres-
xeR?

ponding to (SQE1) and (SQEZ2) respectively affds a solution of (3). Assume
there exist a local minimizer of (SQ) fulfilling the assumption of Proposition 4.
Then there exist a global minimizer of (SQ)Zi and in Z3. If (SQ) has a unique
solutionx* thenZ; = Z5 = {x*}.

In [16] the lower bound¥[ ,, was computed for random examples up to 30
variables. The numerical results showed that very ofig), matches with the
optimal value. Note that the redundant constraints of (BQE), (SQE) and (7) are
also used in [22] for defining so-called RLT-relaxations of nonconvex quadratic
programs.
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7. Conclusion

We presented an algorithm for solving problem (Q) based on optimality cuts. If
all global minimizers of problem (Q) fulfill Assumption 2 and a heuristic is used
which provides a local minimizer if a partition set is diminished sufficiently then
the algorithm terminates in finite time. For the implementation of the algorithm the
following methods are required:

1. AheuristicF (S). One possibility to defing (S) is to use a Lagrange Heuristic
(see Remark 1) combined with a local search method. For special cases of
problem (Q) a specialized heuristic should be used (for example for quadratic
integer problems).

2. A tight lower bounding methog (S). These bounds can be computed as in
Proposition 4. Very important is a fast method for solving the Lagrangian
relaxation problem (3). Various methods for solving this problem exist and
are currently under investigation (see Section 3.4).

3. A method for computing an optimality cut. This is based on finding a feasible
point of problem (15). This can be done by checking if there exésiR, such
that A(r - 7,7 - 1) > O whereT andt are estimates fof and i respectively
(see Proposition 2), which is equivalent to check if there exisiR | such that
*1(A + TB) > 0whereA, B € R™™ andB is a positive semidefinite matrix.
From Lemma 8 it follows that exists if and only if the corresponding local
minimizer x* fulfills Assumption 2.

We are currently implementing the lower bounding technigue and the method for
obtaining optimality cuts in a B&B algorithm. Numerical results will be published
in a subsequent paper.
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